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Editor’s Note: This article is the second in a
two-part series on mental models. Part 1
appeared in The Systems Thinker V21N2
(March 2010).You can also read the first part
by clicking here.

n part one of this series, I stated,
“A mental model is a model that

is constructed and simulated within a
conscious mind.”A key part of this defi-
nition is that mental models are not
static; they can be played forward or
backward in your mind like a video
player playing a movie. But even better
than a video player, a mental model can
be simulated to various outcomes, many
times over, by changing the assumptions.

Mental Simulation
Remember the example from part one
of the child reaching for the hot
stove? One possible outcome we can
simulate is that the child does not get
burned.We can simulate this outcome

by altering our
assumptions.We
could include a
parent in the
room who res-
cues the child in
the nick of
time. Or, we
could simulate
the child slipping
just before reach-
ing the stovetop

because, in the photo, the hardwood
floor appears slippery.This kind of
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TEAM TIP
Look for things that rise and fall in
your organization, such as employee
motivation, product sales, progress on
goals, etc.What are the balancing
loops that control and limit growth in
these areas?
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mental simulation allows us to evaluate
what may happen, given different con-
ditions, and inform our decision mak-
ing.You don’t have to make any
decisions while looking at the picture,
but imagine what actions you might
take if the scene above was actually
unfolding in front of you.

It seems effortless to mentally sim-
ulate these types of mental models.
Most of the time, we are not even
aware that we are doing it. But other
times, it becomes obvious that our
brain is working rather hard. For
example, looking at the chess board
below, can you determine if the con-
figuration is a checkmate?

It is indeed. But I’ll bet it took
noticeably more effort for you to men-
tally simulate the chess game than it
did with the child near the stove sce-
nario. Think about the mental effort
that the players make trying to simulate
the positions on the board just a few
moves ahead in the game.

The paper “The Magical Number
Seven, Plus or Minus Two: Some Limits
on Our Capacity for Processing Infor-
mation” by G.A. Miller (1956) estab-
lished that people can generally hold
seven objects (numbers, letters, words,
etc.) simultaneously within their work-
ing memory.Think of “working mem-
ory” as you would think of memory in
a computer. It’s like the amount of
Copyright © 2010 Pegasu
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RAM we have available to perform
computations within our mind.And it’s
not very much.This means if people
want to do any really complex informa-
tion processing, they’ll need some
help. Over the last 50 years or so, the
help has come from computers. (In fact,
IBM designed a computer specifically
for playing chess, dubbed “Deep Blue”).

Digital computers have catapulted
humankind’s ability to design, test, and
build new technology to unbelievable
levels in a relatively short period of
time. Space exploration, global telecom-
munication, and modern healthcare
technology would not have been possi-
ble without the aid of computers.We
are able to perform the computation
required to simulate complex systems
using a computer instead of our minds.
Running simulations with a computer
is faster and more reliable.

What Makes a Model Useful?
Models that we can simulate using
computers come in many forms. For
example, a model could be a financial
model in a spreadsheet, an engineering
design rendered with a CAD program,
or a population dynamics model cre-
ated with STELLA. But what makes
any of these models useful? Is it the
model’s results? Its predictions? I think
the ability to explain the results is what
makes a model truly useful.

Models are tools that can contribute
to our understanding and decision-
making processes.To make decisions, a
person needs to have some understand-
ing of the system the model repre-
sents. A business finance model, for
example, can be a useful tool if you
understand how the business works.

Consider a model that does not
provide any explanatory content, only
results.This type of model is often
referred to as a “black box.” It gives you
all the answers, but you have no idea
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how it works. People rarely trust these
types of models, and they are often not
very useful for generating understanding.

The
most useful
models are
structured
so that the
model itself
will provide
an explana-
tory framework that enables someone
to ask useful questions of it.Those
questions may be answered by experi-
menting with the model (simulating)
which, in turn, can help deepen a per-
son’s understanding of the system.

This is an important feedback loop
in a person’s learning process.This
feedback loop can be accelerated if the
model provides explanations and can
be simulated with a computer.

Transforming your mental models
into visual models that are easier to
understand and experiment with will
deepen your understanding and help
you communicate your models more
effectively.

Modeling Dynamic Systems
Dynamic systems are notoriously diffi-
cult to understand.A survey of opinions
and policy proposals concerning the
recent global economic crisis, healthcare
reform in the US, and climate change
will yield a myriad of mental models
about how these systems work, and what
action we can take to improve them.
These systems are hard to understand
because they challenge our mental
capacity to model and to simulate
them. Systems problems are character-
ized by non-linearity, delays, and com-
peting feedback loops, all of which are
challenging to understand.

As a result of the complexity that is
inherent within dynamic systems, you’ll
often find a lot of debate and mistrust of
proposals to change them.Think about
how complex issues are presented in
newspapers, in blogs, on television, and
in the workplace.Typically, projections
concerning what will happen if we
adopt one proposal or another will be
presented with little explanation of how
the proposal will change the system’s
behavior. People have difficulty engaging
in meaningful discussion about how to
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actually solve problems without any
common ground for understanding the
dynamics of the system.

This is why developing a visual
representation of how a system is struc-
tured underpins the philosophy behind
systems thinking and simulation soft-
ware such as iThink and STELLA. In
this article, I’ll show how this works
using STELLA.

Stocks and Flows
The mental model of the learning
process pictured above is a visual repre-
sentation of cause and effect relation-
ships. These cause and effect relationships
can be modeled operationally using stocks
and flows to simulate them using
STELLA.

A stock is an accumulation within a
system.Think of it as a bathtub. Like a
bathtub, stocks can be filled
and drained. In STELLA,
stocks are indicated by a
rectangle. Stocks can be any-
thing that accumulates—
water, money, people, anger, and moti-
vation are all examples of stocks.

A flow can add to, or subtract from,
a stock.Think of the faucet running
water into the bathtub as it fills.The
stock is the accumulation of water in
the bathtub, and the flow is the rate at
which the water is flowing in.

In the example below, the Popula-
tion stock increases as people are
born. If people are born at a constant
rate, then we’ll see a linear increase in
the Population over time.

Similarly, the deaths flow pictured
below removes people from the popula-
tion, causing the level to drop over time.

The clouds on the ends of the flows
represent infinite sources or sinks. In the
model above, deaths flow into a cloud,
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which is outside the system boundary
and therefore can accumulate infinitely.

Feedback Loops
Feedback loops are what enable sys-
tems to run themselves.They are diffi-
cult to simulate mentally, but easy to
construct using stocks and flows.A
connector (red arrow) indicates a
dependency between two parts of a
system. In the model below, the births
flow is dependent on the Population
level and birth rate.

The birth rate is represented using a
converter. Converters can contain
expressions or constants that can be
used to modify other parts of the
model.As you might suspect, the births
flow is defined as Population * birth
rate. By representing the birth rate
with a converter, we can easily see that
the flow of births is a function of both
Population and birth rate.

This structure creates a reinforcing
feedback loop. Notice the population
exhibits exponential growth when sim-
ulated over time.There is nothing limit-
ing the growth of the population. One
way to limit the growth is to add a bal-
ancing loop.

The relationship between the size
of the Population and the death rate form
a balancing loop.The death rate changes
based on the Population size and there-
fore limits the growth of the population.
If the population grows too dense,
deaths occur at a higher rate.
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Now that we have explored the
basic building blocks (stock, flow, con-
nector, converter) and how to map out
feedback loops, we can build, and exper-
iment with, a real model of a complex
feedback system.

Predator-Prey Dynamics
A classic example of a complex feed-
back system is the dynamics exhibited
by predator-prey populations.A remark-
able dataset from the Hudson Bay
Company in Canada of lynx and snow-
shoe hare pelt trading records gives us a
rare look at an isolated natural system.
The records span almost a century,
beginning in 1845. From these records,
we can infer the population levels of
both species.

At first pass, it seems that there was
little keeping the hare population in
check other than the lynx population
(hares are the primary food source for
lynx).What is interesting here is the
oscillation pattern. How does the inter-
action between the two population sys-
tems generate this oscillation? Let’s try
to answer this question by constructing
a model that we can easily understand
and experiment with.

Understanding the System
What is your mental model of how a
lynx population increases or declines
over time? My guess is that it may
include a long list of external factors
(industrialization, weather, urban sprawl,
etc.), but the core of the mental model
probably contains operational under-
standing: Births and deaths ultimately
control the population level. Converting
this mental model into an operational
stock and flow model in STELLA looks
like this:
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The more lynx you have in a given
population, the more lynx are born.This
is a reinforcing feedback loop.As the
population increases, lynx may start
dying at a faster rate because they run
out of some resource, such as food.This
is a balancing feedback loop. Here are
the results after I run the simulation:

We can see the population exhibits
S-shaped growth.The value at which
the population levels off is the number
of lynx that is sustainable within this
particular system.

This simple model is congruent
with most people’s mental models of
population dynamics:The population
grows or declines based on the limits of
what is required to sustain it. But let’s go
a bit deeper and think about how this
works.What we have modeled is two
feedback loops (reinforcing and balanc-
ing) competing with one another.

The graph above illustrates that the
reinforcing feedback loop dominates at
the beginning of the simulation, but as
the population grows, the balancing
loop takes control and dampens the
growth. Lynx are still being born when
the population level stabilizes; it’s just
that the number of deaths has become
equal to the number of births. Some-
times a balancing loop is referred to as
a “goal-seeking loop.”The level of the
stock stabilizes when the goal is met.

Take a moment to think about
how the feedback loops within the
lynx and hare populations could inter-
act with one another to generate the
oscillation we saw.We know that each
population in isolation will grow until
the carrying capacity of the system
limits it.What would happen if we
modified the model diagram to show
the dependency between the lynx and
hare population?

I have connected the Lynx popula-
tion with hare deaths and the stock of
Hares with lynx death fraction via the
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hare density variable. (The lynx death
fraction changes based on the density of
hares in the given area.) I now have a
useful model of a complex system:
It is easy to understand how the model
is structured, and I can experiment
with the model by simulating different
scenarios.

Experimenting
I have initialized the values in the model
so that it begins in “dynamic equilib-
rium”—lynx and hares are dying and
being born, but the population levels stay
the same.This is like a bathtub that has
the faucet running at the same rate as
the water leaving through the drain.The
level stays constant, but water is cycling
through. In this case, we have many gen-
erations of lynx and hares, but within the
respective populations, the number of
births and deaths are equal.

If we begin with the model in a
steady-state, we’ll easily recognize
change in behavior as we experi-
ment. Let’s explore the impact of trap-
ping on the populations, since we
know both species were trapped for
pelts when the data was collected.

I have added an additional outflow
to the stock of Lynx that represents trap-
ping. I defined the outflow so that trap-
ping begins after 10 years.At that point,
H I N K E R ® N OV E M B E R 2 0 1 0 9



100 lynx are trapped and removed from
the stock of Lynx. Pictured below is the
graph after the simulation is run with
this new scenario:

And here is the graph after I set
lynx trapped to 500 and ran the simula-
tion again:

In both experiments, the popula-
tions begin oscillating at the moment
the trapping suddenly reduces the lynx
population. How can our knowledge
of the feedback loops at play in this
system help explain these results?

We know that in this model, the
size of the hare population is limited
only by the number of lynx.When that
number suddenly drops, the hare popu-
lation increases because there are not as
many lynx hunting the hares.What
happens to the lynx population?
Because there are more hares and fewer
lynx, the lynx population increases as
well. (There is ample food available for
the reduced lynx population.) The rein-
forcing loop of births increases the
population level, unconstrained by its
balancing loop (Figure 1).
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FIGURE 1
Then something interesting hap-
pens:The hare population peaks as the
lynx population reaches its pre-trapping
level.At this point, the lynx population
has increased to a level that limits the
growth of the hare population (Figure
2). Lynx are eating hares faster than
they can reproduce because of the
increased hare density and number of
lynx hunting. In other words, the hare
population’s balancing loop is limiting
hare growth.

For a few years following the hare
population’s peak, the lynx population
continues to grow. During this period
(as the hare population falls and lynx
population rises), the reinforcing births
loop dominates the lynx population
level (Figure 3).There are ample hares
available to prevent the lynx popula-
tion from starving; the lynx balancing
loop is not limiting their growth.

A few years later, the lynx popula-
tion’s balancing loop kicks in as the
number of hares plunges down-
ward. There are not enough hares left
to support so many lynx, so they die at
a much faster rate.This rapid decline in
lynx has the same effect on the hare
population as trapping lynx: It begins
another cycle of the populations over-
shooting the carrying capacity of the
system, and subsequently collapsing.

How did our understanding of the
model structure help us understand the
results of our experiments? We traced
the cause of the oscillation back to the
behavior of the feedback loops at play
within the population systems. In doing
so, we gained a deeper understanding of
the system that includes the behavior of
two interdependent balancing
loops.This understanding can lead to
more questions:Will we observe the
same behavior if we trap hares instead
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FIGURE 2 FIGU
of lynx? How can we stop the oscilla-
tion? How will the oscillation change if
we include the hare population’s food
constraint in the model?

In the early 1900s, the mathemati-
cians Lotka andVolterra came up with
a pair of non-linear, differential equa-
tions to describe the dynamics of a
predator-prey system. (They did not
have the luxury of computers and soft-
ware). The same oscillating behavior is
observed in economic systems, and as a
result the Lotka-Volterra equations
played a role in the development of
economic theory. It is the understand-
ing of the dynamics of oscillation that
is useful here—much more so than the
numbers.This understanding enables us
identify the structures that cause this
behavior.When we observe oscillatory
behavior in the future, our mental
models will be more accurate, and
we’ll be better equipped to make an
informed analysis.

Better Mental Models,
Simulated More Reliably
Our world is only going to become
more complex, and we need good
thinkers helping to make it a better
place for everyone. Sharing systems
models with people is a great way to
increase their understanding of feed-
back loops and system dynamics.
Building models yourself is even more
valuable, because you’ll learn a lot
about your own mental models and
improve them. Practice will help you
to construct better mental models, sim-
ulate them more reliably, and commu-
nicate them more effectively.
Improving these skills will help inform
what actions you take in the face of
complex, systemic problems.

Jeremy Merritt is a lead
software engineer at isee
systems, Inc.This article
originally appeared on the
Making Connections blog and
is reprinted with permission.
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